Example 관측가능 표준형

Example • Views 452 • Comments 0 • Last Updated at 1 year ago  
  • 관측가능 표준형
  • 상태방정식

관측가능형

  • G(s)=5s+4s3+2s2+3s+1 G(s) = \dfrac{5s+4}{s^3 + 2s^2 + 3s +1} 관측가능 표준형으로 바꾸면?

해]

G(s)=Y(s)U(s)=5s+4s3+2s2+3s+1 G(s)= \dfrac{Y(s)}{U(s)}= \dfrac{5s+4}{s^3 + 2s^2 + 3s +1}

  • 양변을 크로스로 곱해준다

(s3+2s2+3s+1)Y(s)=(5s+4)U(s) (s^3 + 2s^2 + 3s +1)Y(s) = (5s+4)U(s)

(s3+2s2+3s)Y(s)+Y(s)=5sU(s)+4U(s) (s^3 + 2s^2 + 3s)Y(s) + Y(s) = 5sU(s)+4U(s)

(s3+2s2+3s)Y(s)5sU(s)=Y(s)+4U(s)=sX1(s) (s^3 + 2s^2 + 3s)Y(s) - 5sU(s) = -Y(s) +4U(s) = sX_1(s)

(s2+2s+3)Y(s)5U(s)=X1(s) (s^2 + 2s + 3)Y(s) - 5U(s) = X_1(s)

(s2+2s)Y(s)=X1(s)3Y(s)+5U(s)=sX2(s) (s^2 + 2s )Y(s) = X_1(s)- 3Y(s) + 5U(s) = sX_2(s)

(s+2)Y(s)=X2(s) (s + 2)Y(s) = X_2(s)

sY(s)=X2(s)2Y(s)=sX3(s) sY(s) = X_2(s) - 2Y(s) = sX_3(s)

Y(s)=X3(s) Y(s) = X_3(s)

  • 마지막 식에서 얻은 결과 X3(s)=Y(s) X_3(s) = Y(s)를 위 식들에 대입한다.

sX1(s)=Y(s)+4U(s)sX2(s)=X1(s)3Y(s)+5U(s)sX3(s)=X2(s)2Y(s)Y(s)=X3(s) \begin{aligned} sX_1(s) &= -Y(s) +4U(s) \\ sX_2(s) &= X_1(s)- 3Y(s) + 5U(s) \\ sX_3(s) &= X_2(s) - 2Y(s) \\ \\ Y(s) &= X_3(s)\end{aligned}

[x1(t)˙x2(t)˙x3(t)˙]=[001103012][x1(t)x2(t)x3(t)]+[450]u(t) \begin{bmatrix} \dot{x_1(t)} \\ \dot{x_{2}(t)}\\ \dot{x_{3}(t)} \end{bmatrix} = \begin{bmatrix} 0 & 0&-1\\1&0&-3\\ 0&1&-2 \end{bmatrix} \begin{bmatrix} {x_1(t)} \\ {x_{2}(t)}\\ {x_{3}(t)} \end{bmatrix} + \begin{bmatrix} 4 \\ 5\\ 0\end{bmatrix}u(t)

[y(t)]=[001][x1(t)x2(t)x3(t)]+[0]u(t) \begin{bmatrix} y(t) \end{bmatrix} = \begin{bmatrix} 0& 0&1 \end{bmatrix} \begin{bmatrix} {x_1(t)} \\ {x_{2}(t)}\\ {x_{3}(t)} \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u(t)

previous article
last article
Comments
Feel free to ask a question, answer or comment, etc.