Lecture 예제] 근궤적 그리기

Lecture • Views 1086 • Comments 0 • Last Updated at 1 year ago  
  • 그리기
  • 근궤적 그리기

G(s)H(s)=ks(s+2)(s+4) G(s)H(s) = \dfrac{k}{s(s+2)(s+4)}

G(s)H(s)=ks(s+1)(s+3)(s+4) G(s)H(s) = \dfrac{k}{s(s+1)(s+3)(s+4)}

G(s)H(s)=k(s26s+34)(s+2)(s+6) G(s)H(s) = \dfrac{k(s^2-6s+34)}{(s+2)(s+6)}

G(s)H(s)=k(s+10)s(s+4)(s+6) G(s)H(s) = \dfrac{k(s+10)}{s(s+4)(s+6)}

G(s)H(s)=k(s+8)(s+2)(s+3)(s+5) G(s)H(s) = \dfrac{k(s+8)}{(s+2)(s+3)(s+5)}

G(s)H(s)=k(s2+2s+2)s2(s+2) G(s)H(s) = \dfrac{k(s^2+2s+2)}{s^2(s+2)}

G(s)H(s)=k(s+2)s3 G(s)H(s) = \dfrac{k(s+2)}{s^3}

G(s)H(s)=ks2s2+3s+2 G(s)H(s) = \dfrac{k s^2}{s^2+3s+2}

G(s)H(s)=1s(s+2)(s2+2s+5) G(s)H(s) = \dfrac{1}{s(s+2)(s^2+2s+5)}

G(s)H(s)=1s(s2+2s+2) G(s)H(s) = \dfrac{1}{s(s^2+2s+2)}

G(s)H(s)=1s(s+1) G(s)H(s) = \dfrac{1}{s(s+1)}

G(s)H(s)=1s(s+1)(s+2) G(s)H(s) = \dfrac{1}{s(s+1)(s+2)}

G(s)H(s)=1s(s+1)(s+2)(s+3) G(s)H(s) = \dfrac{1}{s(s+1)(s+2)(s+3)}

G(s)H(s)=s+3s(s+1)(s+2) G(s)H(s) = \dfrac{s+3}{s(s+1)(s+2)}

previous article
next article
Comments
Feel free to ask a question, answer or comment, etc.