Problem 예제.

Multiple Choice • Views 642 • Comments 0 • Last Updated at 1 month ago  
  • 라플라스 변환
  • 라플라스 변환

ei(t)=Ri(t)+Ldi(t)dt+1Ci(t)dte_i(t)=Ri(t)+L\dfrac{di(t)}{dt}+ \dfrac{1}{C} \int i(t)dt에서 모든 초기 조건을 0으로 하고 라플라스 변환하면 어떻게 되는가?

Subscribe to see the correct answer.
1

I(s)=CLCs2+RCs+1Ei(s)I(s) = \dfrac{C}{LCs^2+RCs+1}E_i(s)

2

I(s)=CsLCs2+RCs+1Ei(s)I(s) = \dfrac{Cs}{LCs^2+RCs+1}E_i(s)

3

I(s)=LCsLCs2+RCs+1Ei(s)I(s) = \dfrac{LCs}{LCs^2+RCs+1}E_i(s)

4

I(s)=1LCs2+RCs+1Ei(s)I(s) = \dfrac{1}{LCs^2+RCs+1}E_i(s)

previous article
next article