문제 예제.

객관식 • 조회수 497 • 댓글 0 • 수정 1개월 전  
  • 시스템 응답
  • 상태변수방정식

다음 계통의 상태 천이 행렬 ϕ(t)를 구하면?

[X1˙X2˙]=[0123][X1X2]\begin{bmatrix} \dot{X_1}\\ \dot{X_2} \end{bmatrix} = \begin{bmatrix} 0&1\\-2 & -3\end{bmatrix}\begin{bmatrix} X_1\\ X_2 \end{bmatrix}

무료 구독을 통하여 정답과 해설을 확인하세요.
1

[2et+e2tete2t2et2e2tet2e2t]\begin{bmatrix} -2e^{-t}+e^{-2t} & -e^{-t} - e^{2t} \\ -2e^{-t}-2e^{-2t} & -e^{-t} - 2e^{-2t} \end{bmatrix}

2

[2et+e2tet+e2t2et2e2tet2e2t]\begin{bmatrix} 2e^{t}+e^{2t} & -e^{t} + e^{-2t} \\ 2e^{t}-2e^{2t} & e^{t} - 2e^{-2t} \end{bmatrix}

3

[2ete2tete2t2et+2e2tet+2e2t]\begin{bmatrix} 2e^{-t}-e^{2t} & e^{-t} - e^{2t} \\ -2e^{-t}+2e^{2t} & -e^{t} + 2e^{2t} \end{bmatrix}

4

[2ete2tete2t2et+2e2tet+2e2t]\begin{bmatrix} 2e^{-t}-e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t}+2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}

이전 글
다음 글