강의노트 라플라스 역변환

강의노트 • 조회수 963 • 댓글 0 • 수정 10개월 전  
  • 라플라스 변환
  • 기본수학
  • 라플라스 변환

식(1)을 이용하여 라플라스 역변환을 구할 수 있다.

f(t)=L1[F(s)]=12πjσjσ+jf(s)estds(1)\tag{1} f(t)=\mathcal{L}^{-1}[F(s)]=\dfrac{1}{2\pi j}\int_{\sigma -j\infty}^{\sigma +j\infty}f(s)e^{st}ds

어려운 적분을 피해 F(s)F(s)를 부분 분수로 분해(partial fraction expansion)하고 라플라스 변환 테이블 이용하여 f(t)f(t)를 구한다.

부분 분수에 의한 라플라스 역변환

실수 단근인 경우

G(s)=N(s)(s+p1)(s+p2)(s+pn)=K1s+p1+K2s+p2++Kns+pnG(s)=\dfrac{N(s)}{(s +p_{1})(s + p_{2})\cdots(s + p_{n})}=\dfrac{K_{1}}{s + p_{1}}+\dfrac{K_{2}}{s + p_{2}}+\cdots +\dfrac{K_{n}}{s + p_{n}}

Ki=limspi(s+pi)G(s)\left . K_{i}=\lim_{s\to -p_{i}}(s+p_{i})G(s)\right.

L1[G(s)]=L1[K1s+p1]+L1[K2s+p2]++L1[Kns+pn]=K1ep1t+K2ep2t++Knepnt\begin{align*} \mathcal{L}^{-1}[G(s)] & =\mathcal{L}^{-1}[\dfrac{K_{1}}{s + p_{1}}]+\mathcal{L}^{-1}[\dfrac{K_{2}}{s + p_{2}}]+\cdots +\mathcal{L}^{-1}[\dfrac{K_{n}}{s + p_{n}}]\\&= K_{1}e^{-p_{1}t}+ K_{2}e^{-p_{2}t}+\cdots + K_{n}e^{-p_{n}t} \end{align*}

[예] F(s)=10s3+8s2+15sF(s)=\dfrac{10}{s^{3}+ 8 s^{2}+ 15s}

[풀이]

F(s)=10s3+8s2+15s=10s(s+3)(s+5)=k1s+k2s+3+k3s+5F(s)=\dfrac{10}{s^{3}+ 8 s^{2}+ 15s} = \dfrac{10}{s(s+3)(s+5)} = \dfrac{k_1}{s}+\dfrac{k_2}{s+3}+\dfrac{k_3}{s+5}

k1=lims0s10s(s+3)(s+5)=1015=23k_1 = \lim_{s \to 0} s \cdot \dfrac{10}{s(s+3)(s+5)} = \dfrac{10}{15} = \dfrac{2}{3}

k2=lims3(s+3)10s(s+3)(s+5)=10(3)(3+5)=53k_2 = \lim_{s \to -3} (s+3) \cdot \dfrac{10}{s(s+3)(s+5)} = \dfrac{10}{(-3)(-3+5)} = -\dfrac{5}{3}

k3=lims5(s+5)10s(s+3)(s+5)=10(5)(5+3)=1k_3 = \lim_{s \to -5} (s+5) \cdot \dfrac{10}{s(s+3)(s+5)} = \dfrac{10}{(-5)(-5+3)} = 1

F(s)=231s531s+3+11s+5 F(s) = \dfrac{2}{3} \dfrac{1}{s} -\dfrac{5}{3}\dfrac{1}{s+3} +1\dfrac{1}{s+5}

f(t)=23u(t)53e3t+1e5t \therefore \quad f(t) = \dfrac{2}{3} u(t) -\dfrac{5}{3}e^{-3t} +1 e^{-5t}

공액 복소근을 포함한 경우

G(s)=N(s)[(s+α)2+ω2](s+p3)(s+pn)=sA+B(s+α)2+ω2+K3s+p3++Kns+pn\begin{align*} G(s) &=\dfrac{N(s)}{[(s +\alpha)^{2}+\omega^{2}](s + p_{3})\cdots(s + p_{n})}\\\\&=\dfrac{s A + B}{(s +\alpha)^{2}+\omega^{2}}+\dfrac{K_{3}}{s + p_{3}}+\cdots +\dfrac{K_{n}}{s + p_{n}} \end{align*}

  • KiK_i는 위에서 구한 방법으로 구하고
  • A,B는 다음과 같이 구한다.

limsα+jωsA+B=limsα+jω[(s+α)2+ω2]G(s)\lim_{s\to-\alpha +j\omega}s A + B =\lim_{s\rightarrow -\alpha + j\omega}[(s+\alpha)^{2}+\omega^{2}]G(s)

[예] F(s)=3s3+2s2+2sF(s)=\dfrac{3}{s^{3}+ 2 s^{2}+ 2s}

[풀이]

F(s)=3s3+2s2+2s=3s((s+1)2+12)=k1s+sA+Bs((s+1)2+12) F(s)=\dfrac{3}{s^{3}+ 2 s^{2}+ 2s} = \dfrac{3}{s((s+1)^2+1^2)}= \dfrac{k_1}{s} + \dfrac{sA+B}{s((s+1)^2+1^2)}

k1=lims0s3s((s+1)2+12)=3(0+1)2+1=32 k_1 = \lim_{s \to 0} s \cdot \dfrac{3}{s((s+1)^2+1^2)} = \dfrac{3}{(0+1)^2+1} = \dfrac{3}{2}

lims1+j1sA+B=lims1+j1[(s+1)2+12]3s((s+1)2+12)=31+j11j11j1=1.51.5j\begin{aligned} \lim_{s\to -1+j1}s A + B &=\lim_{s\rightarrow -1+ j1}[(s+1)^{2}+1^{2}] \dfrac{3}{s((s+1)^2+1^2)} \\& = \dfrac{3}{-1+ j1} \cdot \dfrac{-1-j1}{-1-j1} = -1.5 - 1.5j\end{aligned}

(1+j1)A+B=1.51.5j (-1+j1)A+B = -1.5 - 1.5j

{A+B=1.5A=1.5 \begin{cases} -A +B &= -1.5 \\ A &= -1.5 \end{cases}

A=1.5,B=3 \therefore \quad A = -1.5, \quad B = -3

F(s)=1.5s1.51s+2(s+1)2+12=1.5s1.5[s+1(s+1)2+12+1(s+1)2+12] \begin{aligned} F(s)&= \dfrac{1.5}{s} -1.5 \cdot \dfrac{1s +2}{(s+1)^2+1^2} \\ &= \dfrac{1.5}{s} -1.5 \cdot \left[ \dfrac{s +1}{(s+1)^2+1^2} + \dfrac{1}{(s+1)^2+1^2} \right] \end{aligned}

f(t)=1.5u(t)1.5[cos(t)et+sin(t)et] \therefore \quad f(t) = 1.5u(t) -1.5 \left[ \cos( t) e^{-t} + \sin(t) e^{-t}\right]

다중근인 경우

G(s)=N(s)(s+p1)m(s+p2)(s+pn)=K11(s+p1)m+K12(s+p1)m1++K1m(s+p1)+K2s+p2++Kns+pn\begin{align*} G(s) &=\dfrac{N(s)}{(s +p_{1})^{m}(s + p_{2})\cdots(s + p_{n})}\\\\&=\dfrac{K_{11}}{(s + p_{1})^{m}}+\dfrac{K_{12}}{(s + p_{1})^{m-1}}+\cdots +\dfrac{K_{1m}}{(s + p_{1})}+\dfrac{K_{2}}{s + p_{2}}+\cdots +\dfrac{K_{n}}{s + p_{n}} \end{align*}

K11=limspi(s+pi)mG(s) K_{11}=\lim_{s\to -p_{i}}(s+p_{i})^{m}G(s)

K12=limspidds[(s+pi)mG(s)] K_{12}=\lim_{s\to -p_{i}}\dfrac{d}{ds}\left[(s+p_{i})^{m}G(s)\right]

\vdots

K1m=limspi1(m1)!dm1dsm1[(s+pi)mG(s)]K_{1m}=\lim_{s\to -p_{i}}\dfrac{1}{(m-1)!}\dfrac{d^{m-1}}{ds^{m-1}}\left[(s+p_{i})^{m}G(s)\right]

[예] F(s)=s+2s3(s+1)2F(s)=\dfrac{s+2}{s^{3}(s+1)^{2}}

[풀이]

F(s)=s+2s3(s+1)2=k11s3+k12s2+k13s+k21(s+1)2+k22(s+1)F(s)=\dfrac{s+2}{s^{3}(s+1)^{2}} = \dfrac{k_{11}}{s^3} + \dfrac{k_{12}}{s^2}+\dfrac{k_{13}}{s} + \dfrac{k_{21}}{(s+1)^2}+\dfrac{k_{22}}{(s+1)}

k11=lims0s3s+2s3(s+1)2=2 k_{11} = \lim_{s\to 0} s^{3} \cdot \dfrac{s+2}{s^{3}(s+1)^{2}} = 2

k12=lims0dds[s+2(s+1)2]=lims0[1(s2+2s+1)(s+2)(2s+2)(s+1)4]=lims0[s2+2s+12s26s4(s+1)4]=3\begin{aligned}k_{12}&=\lim_{s\to 0} \dfrac{d}{ds}\left[\dfrac{s+2}{(s+1)^{2}} \right] = \lim_{s\to 0} \left[\dfrac{1 \cdot (s^2+2s+1)-(s+2) \cdot (2s+2)}{(s+1)^{4}} \right] \\ \\ &= \lim_{s\to 0} \left[\dfrac{s^2+2s+1-2s^2 -6s -4}{(s+1)^{4}} \right] = -3 \end{aligned}

k13=lims0dds[(s+3)(s+1)3]=lims0[1(s+1)3+(s+3)3(s2+2s+1)(s+1)6]=8k_{13}= \lim_{s\to 0} \dfrac{d}{ds}\left[\dfrac{-(s+3)}{(s+1)^{3}} \right] = \lim_{s\to 0} \left[\dfrac{-1 \cdot (s+1)^3 +(s+3)3(s^2+2s+1) }{(s+1)^{6}} \right] = 8

k21=lims1(s+1)2s+2s3(s+1)2=1 k_{21} = \lim_{s\to -1} (s+1)^{2} \cdot \dfrac{s+2}{s^{3}(s+1)^{2}} = -1

k22=lims1dds[s+2s3]=lims1[1(s3)(s+2)(3s2)s6]=lims1[2s36s2(s)6]=4\begin{aligned}k_{22}&=\lim_{s\to -1} \dfrac{d}{ds}\left[\dfrac{s+2}{s^{3}} \right] = \lim_{s\to -1} \left[\dfrac{1 \cdot (s^3)-(s+2) \cdot (3s^2)}{s^{6}} \right] \\ \\ &= \lim_{s\to -1} \left[\dfrac{-2s^3-6s^2}{(s)^{6}} \right] = -4 \end{aligned}

F(s)=s+2s3(s+1)2=2s3+3s2+8s+1(s+1)2+4(s+1) \therefore F(s)=\dfrac{s+2}{s^{3}(s+1)^{2}} = \dfrac{2}{s^3} + \dfrac{-3}{s^2}+\dfrac{8}{s} + \dfrac{-1}{(s+1)^2}+\dfrac{-4}{(s+1)}

f(t)=L1F(s)=t23t+8u(t)tet4et f(t) = \mathcal{L}^{-1}F(s) = t^2-3t+8u(t)-te^{-t}-4e^{-t}

라플라스 변환에 의한 미분 방정식의 해법

d2ydt2+5dydt+6y=us(t);y(0)=1,y(1)(0)=0 \dfrac{d^{2}y}{dt^{2}}+ 5\dfrac{dy}{dt}+ 6y = u_{s(t)} \quad ; \quad y(0)=1 , \quad y^{(1)}(0)= 0

d2c(t)dt2+5dc(t)dt+6c(t)=10u(t);c(0)=0 \dfrac{d^{2}c(t)}{dt^{2}}+ 5\dfrac{d c(t)}{dt}+ 6c(t)= 10u(t) \quad ; \quad c(0)=0

d2ydt2+3dydt+2y=5;y(0)=1,y(1)(0)=2 \dfrac{d^{2}y}{dt^{2}}+ 3\dfrac{dy}{dt}+ 2y = 5 \quad ; \quad y(0)=-1, \quad y^{(1)}(0)= 2

이전 글
다음 글
댓글
댓글로 소통하세요.