문제 예제.

객관식 • 조회수 726 • 댓글 0 • 수정 3개월 전  
  • 라플라스 변환
  • 라플라스 변환

라플라스 변환을 이용하여 미분 방정식을 풀면?

d2ydt2+3y=0 \dfrac{d^2 y}{dt^2} + 3y = 0 단, y(0)=3,y˙(0)=4y(0)=3, \quad \dot{y}(0) =4

무료 구독을 통하여 정답과 해설을 확인하세요.
1

3cos3t+43sin3t3 \cos \sqrt{3} t + \dfrac{4}{3} \sin \sqrt3 t

2

3cos3t+433sin3t3 \cos \sqrt{3} t + \dfrac{4\sqrt3}{3} \sin \sqrt3 t

3

3cos3t+4sin3t3 \cos \sqrt{3} t + 4 \sin \sqrt3 t

4

3cos3t+43sin3t3 \cos 3 t + \dfrac{4}{\sqrt3} \sin \sqrt3 t

이전 글
다음 글