나이퀴스트 선도 그리기
- G(s)H(s)=s(s+2)(s+10)K

- GH(s)에 s=jω 를 대입 :
GH(jω)=jω(jω+2)(jω+10)K
- ω→0+ (A점에 해당)
GH(j0)=j0(j0+2)(j0+10)K=∞∠(−90∘)
- ω→+∞ (B점에 해당)
GH(j∞)=j∞(j∞+2)(j∞+10)K=0∠(−270∘)
- s=Rjθ∣{R→∞θ→90∘→0→−90∘ (C점에 해당)
GH(Rjθ)=Rjθ(Rjθ+2)(Rjθ+10)K=0∠(−3θ)=0∠(−270∘→0∘→270∘)
- ω→−∞ (D점에 해당)
GH(−j∞)=−j∞(−j∞+2)(−j∞+10)K=0∠(−90∘)
- ω→0− (E점에 해당)
GH(j0−)=j0−(j0−+2)(j0−+10)K=∞∠(90∘)
- s=rjθ∣{r→0θ→−90∘→0→90∘ (F점에 해당)
GH(rjθ)=rjθ(rjθ+2)(rjθ+10)K=∞∠(−θ)=∞∠(90∘→0∘→−90∘)
- 실수축과의 교차점 :
GH(jω)=jω(jω+2)(jω+10)K=−12ω2+jω(20−ω2)K⋅−12ω2−jω(20−ω2)−12ω2−jω(20−ω2)=144ω4+ω2−12Kω2−jKω(20−ω2)
−Kω(20−ω2)=0⇒ω=20
GH(j20)=144204+202−12K202=57620−240K
K=1


k=250

로그인 하면 댓글을 쓸 수 있습니다.