강의노트 2차앞선요소

강의노트 • 조회수 454 • 댓글 0 • 수정 4개월 전  
  • 요소별 보드선도
  • 주파수응답

2차 앞선요소

G(s)=(sωn)2+(2asωn)+1=s2+2aωns+ωn2ωn2 G(s) = (\dfrac{s}{\omega_n})^2 + (2a\dfrac{s}{\omega_n}) + 1 = \dfrac{s^2 + 2a\omega_ns+\omega^2_n}{\omega^2_n}

G(jω)=(jω)2+2aωn(jω)+ωn2ωn2=1(ωωn)2+j2a(ωωn) G(j\omega) = \dfrac{(j\omega)^2 + 2a\omega_n(j\omega)+\omega^2_n}{\omega^2_n} = 1-(\dfrac{\omega}{\omega_n})^2+j2a(\dfrac{\omega}{\omega_n})

G(jω)dB=20log10(1(ωωn)2)2+4a2(ωωn)2 \vert G(j\omega) \vert _{dB}= 20 \log _{10} \sqrt{(1-(\frac{\omega}{\omega_n})^2)^2+4a^2(\dfrac{\omega}{\omega_n})^2}

이득

ωωnG(jω)dB20log101=0 \omega \ll \omega_n \quad \Rightarrow \quad \vert G(j\omega) \vert _{dB} \approx 20 \log _{10} \sqrt1 = 0

ω=ωnG(jω)dB=20log104a2=20log10(2a)=20log102+20log10a=6+20log10a \omega = \omega_n \quad \Rightarrow \quad \vert G(j\omega) \vert _{dB} = 20 \log _{10} \sqrt{4a^2} = 20 \log _{10}(2a) = 20 \log _{10} 2 + 20 \log _{10} a = 6 +20 \log _{10} a

ωωnG(jω)dB20log10(ωωn)4=40log10ω40log10(ωn)40log10ω \omega \gg \omega_n \quad \Rightarrow \quad \vert G(j\omega) \vert _{dB} \approx 20 \log _{10} \sqrt{(\frac{\omega}{\omega_n})^4} = 40 \log _{10} \omega -40 \log _{10} (\omega_n) \approx 40 \log _{10} \omega

위상

ωωnG(jω)=tan1(2a(ωωn)1(ωωn)2)=0 \omega \ll \omega_n \quad \Rightarrow \quad \angle G(j\omega) = \tan ^{-1} (\frac{2 a (\frac{\omega}{\omega_n})}{1-(\frac{\omega}{\omega_n})^2}) = 0^\circ

ω=ωnG(jω)=tan1(2a(ωωn)1(ωωn)2)=90 \omega = \omega_n \quad \Rightarrow \quad \angle G(j\omega) = \tan ^{-1} (\frac{2 a (\frac{\omega}{\omega_n})}{1-(\frac{\omega}{\omega_n})^2}) = 90^\circ

ωωnG(jω)=tan1(2a(ωωn)1(ωωn)2)=180 \omega \gg \omega_n \quad \Rightarrow \quad \angle G(j\omega) = \tan ^{-1} (\frac{2 a (\frac{\omega}{\omega_n})}{1-(\frac{\omega}{\omega_n})^2}) = 180^\circ

  • ωn=1 \omega_n = 1 그리고 aa는 0.1에서 0.9까지 0.1식 증가한 시스템의 보드선도이다.

이전 글
다음 글
댓글
댓글로 소통하세요.