Lecture 경사 슬롯 기전력

Lecture • Views 548 • Comments 0 • Last Updated at 3 months ago  
  • 권선법
  • 동기기

경사 슬롯

경사 슬롯 계수

  • 직선 슬롯의 전압 : en=Eme_{n}= E_{m}

  • 경사 슬롯의 전압 :

es=1θsπ2θs2π2+θs2Emsin(ωt)d(ωt)=Emθscos(ωt)]π2θs2π2+θs2=Emθs(cos(π2+θs2)cos(π2θs2))=2Emsinθs2θs \begin{aligned} e_s &=\dfrac{1}{\theta_s} \int_{\frac{\pi}{2}-\frac{\theta_s}{2}} ^{\frac{\pi}{2}+\frac{\theta_s}{2}} E_m \sin(\omega t) d(\omega t) \\ &= -\dfrac{E_m}{\theta_s} \cos(\omega t) \biggr]_{\frac{\pi}{2} -\frac{\theta_s}{2}} ^{\frac{\pi}{2}+\frac{\theta_s}{2}} \\ &= - \dfrac{E_m}{\theta_s} \left( \cos \left( \dfrac{\pi}{2}+\dfrac{\theta_s}{2} \right)-\cos \left( \dfrac{\pi}{2}-\dfrac{\theta_s}{2} \right) \right) \\ &=\dfrac{2 E_m \sin \dfrac{\theta_s}{2}}{\theta_s} \end{aligned}

ks=esen=2Emsinθs2θsEm=sinθs2θs2 k_s = \dfrac{e_s}{e_n} = \dfrac{\dfrac{2 E_m \sin \dfrac{\theta_s}{2}}{\theta_s}}{E_m} = \dfrac {\sin \dfrac{\theta_s}{2}}{\dfrac{\theta_s}{2}}

previous article
next article
Comments
Feel free to ask a question, answer or comment, etc.